• Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere 

      Myhre, Cathrine Lund; Ferré, Benedicte; Platt, Stephen Matthew; Silyakova, Anna; Hermansen, Ove; Allen, Grant; Pisso, Ignacio; Schmidbauer, Josef Norbert; Stohl, Andreas; Pitt, Joseph R.; Jansson, Pær; Greinert, Jens; Percival, Carl; Fjæraa, Ann Mari; O'Shea, Sebastian J.; Gallagher, Martin; Le Breton, Michael; Bower, Keith N.; Bauguitte, Stéphane Jean-Bernard; Dalsøren, Stig Bjørløw; Vadakkepuliyambatta, Sunil; Fisher, Rebecca E.; Nisbet, Euan G.; Lowry, David; Myhre, Gunnar; Pyle, John Adrian; Cain, Michelle; Mienert, Jurgen (Journal article; Tidsskriftartikkel; Peer reviewed, 2016-05-07)
      We find that summer methane (CH4) release from seabed sediments west of Svalbard substantially increases CH4 concentrations in the ocean but has limited influence on the atmospheric CH4 levels. Our conclusion stems from complementary measurements at the seafloor, in the ocean, and in the atmosphere from land-based, ship and aircraft platforms during a summer campaign in 2014. We detected high ...
    • Methane at Svalbard and over the European Arctic Ocean 

      Platt, Stephen Matthew; Eckhardt, Sabine; Ferré, Benedicte; Fisher, Rebecca E.; Hermansen, Ove; Jansson, Pär; Lowry, David; Nisbet, Euan G.; Pisso, Ignacio; Schmidbauer, Norbert; Silyakova, Anna; Stohl, Andreas; Svendby, Tove Marit; Vadakkepuliyambatta, Sunil; Mienert, Jurgen; Myhre, Cathrine Lund (Journal article; Tidsskriftartikkel; Peer reviewed, 2018-12-05)
      Methane (CH<sub>4</sub>) is a powerful greenhouse gas. Its atmospheric mixing ratios have been increasing since 2005. Therefore, quantification of CH<sub>4</sub> sources is essential for effective climate change mitigation. Here we report observations of the CH<sub>4</sub> mixing ratios measured at the Zeppelin Observatory (Svalbard) in the Arctic and aboard the research vessel (RV) Helmer Hanssen ...